
80 62 CHAR TERIZIN KRIPKE STERUCTURES IN TENPONI. LOlICU) In
- CAREGIE-ELLOW UNIV PITTSBURON PA DEPT OF COMIPUTER

SCIECE * N C BROWENE ET AL. DEC 9? CNU-CS-97-184

UNCLSSIFIED RNF-TR-S?-1169 F33615-84-C-1520 F/O 12/5 W.

I EEEEEEE

4 'ml

JjI1II

~I."I

IJi

" ~ ~... *m.,-

PHOTOGRAPH THIS SHEET

C LEVEL INVENTORY

I7T - 7-/

IDOCUMENT IDENTIFICATION

Ti gdecm =4 me -N

DISTRIBUTION STATEMENT

ACCESSION FOR

NTIS (.RA&I

DTIC TAB DI
UNANNOUNCED El DE EC
JUSTIFICATION

_________________FES 0 9 1988

DISTION ,

AVAILABILITY CODES
DIST AVAIL AND/OR SPECIAL

DATE ACCESSIONED

DISTRIBUTION STAMP

DATE RETURNED

018 2 05 099

DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NO.

PHOTOGRAPH THIS SHEET AND RE fURN TO DTIC-I)I)AC

LI

DTIC FORM 70A DOCUMENT PROCESSING SHEET PREVIOUS F-DITION MAY [3[- USL D UNI IL

DEC 83 STOCK IS LXHAUSTED.

- ' *tP ~ ' ~ ~~ "

A *ang -ewo Unv rst

,9. - -

AFWAL-TR-87-1 168

0
N

CHARACTERIZING KRIPKE STRUCTURES IN TEMPORAL LOGIC

Go
M.C. Browne, E.M. Clarke and 0. Grumberg

Carnegie-Mellon University
Computer Science Department%
Pittsburgh, PA 15213-3890

December 1987

Interim

Approved for Public Release; Distribution is Unlimited

,- 9,.

I %fl%

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

W.t ,

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection witb a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to
be regarded by implication, or otherwise in any manner construed, as licensing
the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASDiPA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

CHAHIRA M. HOPPER RICHARD C. JONES.

Project EnRineer Cb, Advanced Systems Research Gp

Information Processing Technology Br

FOR THE COMMANDER

EDWARD L. GLIATTI

Ch, Information Processing Technology Br

Systems Avionics Div

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify AFWAL/AAAT , Wright-Patterson AFB, OH 45433-6543 to help us maintain
a current mailing list.

Copies of this report should not be returned unless return is required by
security corsiderations, contractual obligations, or notice on a specific
document.

%

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE oMB No 0704-0188

Is. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2&. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

.. , Approved for public release; distribution

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved .

is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU-CS-87-104 AFWAL-TR-87-1168

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable) Air Force Wright Aeronautical Laboratories

Carnegie-Mellon UniversityAFWAL/AAAT-3

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
Computer Science Dept Wright-Patterson AFB OH 45433-6543

Pittsburgh PA 15213-3890

Ba. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRJMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) F33615-84-K-1520

8"c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

61101E 4976 00 01

11. TITLE (Include Security Classification)

Characterizing Kripke Structures In Temporal Logic

12. PERSONAL AUTHOR(S)

M. C. Browne, E. M. Clarke, 0. Grumberg

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Interim FROM TO 1987 December 23

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessar) and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by blOck number)

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

&' UNCLASSIFIEDIUNLIMITED 0 SAME AS RPT 0 DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (InceI, Area Code) 22 "FCE SYVBOL
Chahira M. Hopper (513)255-789S AFWAL/AAAT-3

DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF 'HIS PAGE__
Unclassified

," r" -." ., ' " " " """ -" '""

TABLES OF CONTENTS

1. Introduction
2. The Logics C 11 and CTL 4

3. Equivalence of Kripkc Structures 5

4. Equivalence With Respect To Stuttering 10
5. Algorithm For Stuttering Equivalence 15
6. Conclusion 16 p

06.

V.'

LIST OF FIGURES

Figurel3-: A Kripke structure in which every other state is labelled A

Vi.

'IN'

Characterizing Kripke Structures in Temporal Logic

M. C. Browne

E. M. Clarke

0. Grurnberg
Carnegie Mellon University, Pittsburgh

1. Introduction

[,The question of whether branching-time temporal logic or linear-time temporal logic is best for reasoning

about concurrent programs is one of the most controversial issues in logics of programs. Concurrent

programs are usually modelled by labelled state-transition graphs in which some state is designated as the

initial state. For historical reasons such graphs are called Kripke structure n linear temporal logic,

operators are provided for describing events along a single time path (i.e., along a single path in a Kripke

structure). In a branching-time logic the temporal operators quantify over the futures that are possible from a

given state (i.e., over the possible paths that lead from a state). It is well known that the two types of temporal

logic have different expressive powers444;-9J): Linear temporal logic, for example, can express certain

fairness properties that cannot be expressed in branching-time temporal logic. On the other hand, certain

practical decision problems like model checking (431,-WYJY are easier for branching-time temporal logic than .e

for linear temporal logic.

4-ia ti paper-we providefurther insight on which type of logic is best. W*-shvw that if two finite Kripke

structures can be distinguished by some formula that contains both branching-time and linear-time operators,

then the structures can be distinguished by a formula that contains only branching time operators.

Specifically, we show that if two finite Kripke structures can be distinguished by some formula of the logic

CTL (i.e., if there is some CTL formula that is true in one but not in the other), then they can be

distinguished by some formula of the logic CTL. The logic CTL" ([3], [4]) is a very powerful temporal logic

that combines both branching-time and linear-time operators, a path quantifier. either A ("for all paths") or E

("for some paths") can prefix an assertion composed of arbitrary combinations of the ususal linear time

operators G ("always"), F ("sometimes"), X ("nexttime"), and U ("until"). CTL ([11, [21) is a restricted subset

of CTL° that permits only branching-time operators--each path quantifier must be immediately followed by

exactly one of the operators G, F, X, or U.

Our goal is to show that for any finite Kripke structure M, it is possible to construct a CTL formula FW that

This research was partially supported by NSF Grant MCS-82-16706. The third author, 0 Grumbcrg, is currendy on leave from.
Technion. llaifa and is partially supported by a Wcizmann postdoctoral fellowship.

2

uniquely characterizes .l. Since one Kripkc structure may be a trivial unrolling of another, we use a notion of

equivalence between Kripke structures that is similar to the notion of bisimulation studied by Milncr [121. We

say that states s and s are equivalent if they have the same labelling of atomic propositions and for each

transition from one of the two states to some state t there is a corresponding transition from the other state to

a state t' that is equivalent to i. Two Kripke structures are equivalent if their initial states are equivalcnL It is

not difficult to prove that if two Kripke structures are equivalent, then their initial states must satisfy the same
CTL.

cm..

An obvious first attempt to construct FM is simply to write a CTL formula that specifies the transition

relation of M. For each state s in M we include in FM a conjunct of the form

AG(L(s)=* AEXL(s,) A AX(VL(s1)))
t I

where s. s, are the successors of s and L(i) is the labelling of atomic propositions associated with state t.

It is easy to see, however, that this simple approach cannot work in general: several states in Af may have

exactly the same labelling of atomic propositions.

Instead, we first show that it is possible to write a CTL formula that will distinguish between two states in

the same structure that are not equivalent according to the above definition. Two inequivalent states may have

exactly the same labelling of atomic propositions, they may even have corresponding successors, but the

computation trees rooted at those states must differ at some finite depth. The difference in the computation

trees can be exploited to give a CTL formula that distinguishes between the states. Since equivalent states

satisfy the same CTL* formulas, it follows that if two states can be distinguished by a CTL* formula, they can

be distinguished by a CTL formula. Once we can distinguish between inequivalent states in the same

structure, we can write a single CTL formula that encodes the entire Kripke structure; this formula is the F.

that we seek.

The above construction requires the use of the nexttime operator in specifying FM. In reasoning about

concurrent systems, however, the nexttime operator may be dangerous, since it refers to the global next state

instead of the local next state within a process [10]. What happens if we disallow the nexttime operator in

CTL formulas? The proof, in this case, requires another notion of equivalence--equivalence with respect to

stuttering. We say that two state sequences correspond if each can be partitioned into finite blocks of

identically labelled states such that each state in the i-th block in one sequence is equivalent to each state in

the i-th block of the other sequence. Thus, duplicating some state in a sequence any finite number of times

will always result in a corresponding sequence. We say that two states are equivalent if for each state sequence

starting at one there is a corresponding state sequence that starts at the other. Under this second notion of

equivalence the proof of the characterization theorem becomes much more complicated, since it is possible

...

3

for two inequivalent states to have exactly the same finite behaviors (modulo stuttering). but different infinite

behaviors.

Equivalence under stuttering turns out to be quite useful for reasoning about hierarchically constncted

concurrent systems. In determining the correctness of such a system by using a technique like temporal logic

model checking ([2,[31, [111,1131, [16], [171), it is often desirable to replace a low level module by an

equivalent structure with fewer states. Our results show how this can be done while preserving all of those

properties that are invariant under stuttering. We give polynomial algorithms both for determining if two %

structures are equivalent with respect to stuttering and for minimizing the number of states in a given

structure under this notion of equivalence.

Finally, our results have some interesting implications for the problem of synthesizing finite state

concurrent systems from temporal logic specifications ([2], [141). In order to guarantee that any Kripke

structure can be synthesized from a specification in linear temporal logic, Wolper [18] was forced to introduce

more complicated operators based on regular expressions. Our results show that (at least in theory) no such

extension is necessary for branching-time temporal logic. Any Kripke structure can be specified directly by a

formula of branching-time logic.

The expressive power of various temporal logics has been discussed in several papers; see ([4], [91) for

example. Hennessy and Milner [71, Graf and Sifakis 161, and Pnueli [151 have all discussed the relationship

between temporal logic and various notions of equivalence between models of concurrent programs.

However, we believe that we are the first to show that it is possible to characterize Kripke models within

branching-time logic and to investigate the consequences of this result.

Our paper is organized as follows: In Section 2 we describe the logics CTL and CTI_*. In Section 3, we state

formally what it means for two states in a Kripke structure to be equivalent and prove that equivalent states

satisfy exactly the same CTL" formulas. Section 3 also contains the first of the two main results of the paper:

we show how to characterize Kripke structures using CTL formulas with the nexttime operator. Section 4

introduces the second notion of equivalence (equivalence with respect to stuttering) and shows that if the

nexttime operator is disallowed, then equivalent states again satisfy exactly the same CTL" formulas. We also

extend the characterization theorem of Section 3 to Kripke structures with the new notion of equivalence. In

Section 5 we give a polynomial algorithm for determining if two states are equivalent up to stuttering. The

paper concludes in Section 6 with a discussion of some remaining open problems like the possibility of

extending our results to Kripke structures with fairness constraints (i.e., Buchi Automata).

%* % %

K--

4

2. The Logics CTL and CTL
Thcrc arc two types of formulas in CTL sale fi)nmulas (which .iie true in i pccific statc) ind path

formulas (which are true along a specific path). Lct AP ')c the set 4 itoinL p;Tpt SLion namcs. s tte

formula is either:

* A, ifAeAP.

* Iff and g are state formulas, then -'and fvg are state formulas.

* If f is a path formula, then E(f) is a state formula.

A path formula is either:

" A state formula.

" If f and g are path formulas, then -f f vg Xnd I , andfI; r m 'ulds
S%

CTL" is the set of state formulas generated by the abo. e rules

CTL is a subset of CTL in which we restrict the path tormulas to 6C

" If f and g are state formulas, then X fand f L g ire path form uLis

" If f is a path formula, then so is -,f

We define the semantics of both logics with respect to a structure Al = <S R, L.> where

" S is a set of states.

" RCSxS is the transition relation, which must be total. We write s, t, uindicate that (sE.)R.

" L: S -- 9(AP) is the proposition labeling.

Unless otherwise stated, all of our results apply only to finite Kripke structures.

We on!y consider transition relations where every state is reachable from the initial state. We define a paih

in M to be a sequence of states, ir = s.... such that for every i O, si- si+"1. v i will denote the suffix of v

starting at s1.

We use the standard notation to indicate that a state formula f holds in a structure: M~s 1f means that f

holds at state s in structure M. Similarly, if f is a path formula, M.r =fmeans that f holds along path v in

structure M. The relation 0- is defined inductively as follows (assuming that f, and f are state formulas and

g, and g 2 are path formulas):

1. simA A EL(s).

2.s sli.

3.s sl0 orsf 2 .

0%

5

4. sk=" E(g1) there exists a path 7r starting with s such that v = gj. .

S. V f s is the first state of v and sfA.

6. vt = "g, g ri .

7. w O= gjvg 2 I=g, or ir = g2. '_

8. vI O= Xgt , 9tr Ig"

9. V g1 Ug2 there exists a k_.0such that rk g2 and for all O <j< k, 7rir g.

We will also use the following abbreviations in writing CFL* (and CTI.) formulas:

" fAg -(-JV -g) e Ff - true Uf

" A(f) -E(-,f) *Gf - F-,f.

3. Equivalence of K ipke St ructu res

Given two structures M and M' with the same set of atomic propositions AP, we define a sequence of M

equivalence relations E0. El on SxS' as follows:

* sEts' if and only ifL(s)=L(s').

• sE+s'ifandonly if

o L(s)= (s'),

o Vsj s- =* 3 si[s' - sAs, E l, and

o Vs' --+s = 3sils-.AsE sfl.

Now, we define our notion of equivalence between states: sEs' if and only if sEis' for all i> 0.

Furthermore, we say that M with initial state so is equivalent to M' with initial state s. iff s ES0.

Lemma 1: Let sEs', then for every path, s, there exists a path, s',s' ... such that Vi[siEs1.

Proof: Note first that E,+1 + En.Since E is finite, there must be a k such that Ek±+ = Ek = E. Thus,

we can substitute E for Ek in the definition of Ek+1 giving s Es' if and only if

• L(s)= (s'[

* ~ s --# s', Jsj[s--+s si E,,sf.'

The remainder of the proof is a straightforward induction on the length of the path. 0

,ft

6

Thcoremn2: If sb's'. then VfE CTL [sI=f-= s' ~]

This theorem is a consequence of thc following lemma:

Lemma 3: Let h be either a state formula or a path formula, Let 1T s,s,.. be a path in Al and

= x's' .. be apat~h in Al/ such that sEs' and Vi[sEs I. 'Then

s = h -s' I- h, if h' is a state formula and
i h - 1' = h, if h is a path formula.

Proof: We pro'. the theorem by induction on the structure of h.

Base: h A. By the definition of E, s 0- A s' A.

Induction: There are several cases.

1. h= hA, a state formula.

sP h - s* hi

S' W- 1h (induction hypothesis)
SS/ - h

The same reasoning holds if h is a path formula.

2. h= h V h2, a state formula.

Without loss of generality,

0s h -s* hiA or s* h2

S'P- h, (induction hypothesis)

__ P= h

The argument is the same in the other direction. We can also use this argument if h is a path

formula.

3. h E(h,), a state formula.

Suppose that s= h. Then there is a path, v starting w ith s such that 7Y hi. By Lemma 1, there

is a corresponding path w'~ in Al' starting with s'. So by the induction hypothesis, i hi
V hi . Therefore, s E(h1) s' E(hj). We can use the same argument in the other

direction, so the lemma holds.

7

4. h= hl, where h is a path formula and h, is a state formula.

Although the lengths of h and h, arc the same, wc can imagine that h = path(h), where path is an

operator which converts a state formula into a path formula. Therefore, we are simplifying h by

dropping this path operator. So now:

7r= h s* h1
s' I= h1 (induction hypothesis)

m'li= h.

The reverse direction is similar.

5. h = X h, a path formula.

By the definition of the next-time operator, w7 = hi. Since r and iT correspond, so do wrl and

W". Therefore, by the inductive hypothesis, w = h so 91 t= h. '.'

We can use the same argument in the other direction.

6. h = hlU h2, a path formula. 'S

kr

Suppose that v 0- h1U h2. By the definition of the until operator, there is a k such that v / h2

and for all 0 Sj< k, vi h,. Since w and w' correspond, so do ir and w'- for any j. Therefore, by '

the inductive hypothesis, Wk 0- h2 and 7'Ji= hi for all 0 <j< k. Therefore ir' I h. .1

We can use the same argument in the other direction. 0

Another property of two equivalent states is that they both have corresponding computation trees. For

every sE S, Trn(s) is the computation tree of depth n rooted at s. Formally, Tro(s) consists of a single node

which has the same label as s. Tr+ 1(s) has as its root a node in with the same label as s. If s has successors

s. s, in the Kripke structure, then node in will have subtrees Tr,(s). Tr(s.).

Two trees Tr,(s) and Trn(s') correspond (denoted Tr,(s) = Tr,(s')) if and only if both of their roots have

the same label and for every subtree of depth n- 1 of the root of one, it is possible to find a corresponding

subtree of the root of the other.

.5.

Lemma 4: sEes' if and only if Trj(s) Trj(s') for all j: n.

S..e

'S - 'S~' * *~ * *** ,~.S'p ~ S. ~ ' S ~ ., . ' Y

8VWV LMV

Lemma 5: Given a finite set of states s1 ,, s,~ thcrc exists a c such that if two states si and s, arc not

F-equivalent then *rrc(s1) and 1'rc(sj) will not correspond.

We will call dhe value of c for S the characlerislic numnber of thc structure.

We associate a CMi formula with a tree'rre(s) as follows:

" G[Tr(s)J=(p A ... Ape,) A (-qA . .. -q,), where L(s) = [p,. ... } and AP- L(s) = jq,. q

" 5FfTr, I(s)]= (A EX 'Of[Tr,(s)j) A AX (VI VJTr(sj)J1) A 5J Trjs)], where s; is a successor of s.
i I

Lemzna 6: s F-I[Tr,s)J for all n aO.

Lemma 7: If s =GfTr,,(s')I, then rs)= Tr,1 s').

Proof. The proof is by induction on n. The basis case is trivial. T7hus, we assume that n > 0. Let s,-52,..

be the sons of s in Tr,1 s) and s(.s, .~ be the sons of s' in Tr~(s').

It is easy to see that sand s" have the same labelling of atomic propositions.

We must show that Trn..i(sQ corresponds to some Tr,...(sjl). Since sO-6J[ITr,(s')jI

sO=AX(Y-F(Tr,..1 (sj)1). Since s is a successor of. s, sFfr. 1 (j)] for some jo. Hence,

Tr,,(s) = Tr-Je)by our inductive hypothesis.

Finally, we must show that Tr,,-..(s) corresponds to some Tr,-..(sJ). Since s-GITr(s')j,

s*=AEX'GFITr,-(sjp]. Since s' is a successor of s', s EX'lf1Tr,...(s' f. Therefore, there exists an isuch

that %s4 , '[ITr,-..(s)fl. Hence, Tr,... .) Tr 1s.) by our inductive hypothesis. 0

Lemmna 8: If s is a state in a Kripke structure M-, then there is a CTL formula, Q(.i,s) that determines s up

to E-equivalence within M. i.e. C(M,s) is true in s and every state in M that is E-equivalent to s but false in

every state in M that is not equivalent to s.

Proof: We choose C(M,s)= j['rc(s)J where c is the characteristic number of M. C(MIs) is true in s and

hence in all states E-equivalent to s. Let s' be a state that is not E-equivalent to s, then Trc(s) #Trc(s').

Hence, by lemma 7, s' C(M,s). 0

Thieorem 9: Given a Knipke structure M with initial state so, there is a CTL formula F(A1.so) that

characterizes that structure up to r-equivalence, i.e. M'sl I-- F(Af,so) SO sEsO.

WIFT) ~ W3M r' r-r"-V ,kV

9

Proof. For any state s in A-i, let sl,... s, b the successors of s. We define

G(M,s) = AG(C(A',s)= AEX C(AI,S1) A AX VC(MAsj))

G(AM,s) describes all of the possible transitions from s. F(Af,s,) is the formula (A~ A AG(Afs). If two

structures MA; and M',so are equivalent then by theorem 2 they satisfy the same formulas. Since

Ms0 J= F(Us4) so does M'l,s,'.

For the other direction we show by induction on n that if M' ,s.' 1- F(Mf,s0) then Tr,,(s.) =-Tr,(sl) for all

n 2: 0. By lemma 4, the two structures are then E-equivalent. 0

Corollary 10: Given two structures M and M ' with initial states so and s~o respectively, so Eso' if and only if

WfE CTLIMso I=fs Afl,so PA.

Corollary 11: Given two structures M and AM' with initial states so and s-O respectively, if there is a formula

of CTU* that is true in one and false in the other, then there is also a formula of CTL that is true in the one W

and false in the other.

We ilusrat ou mehod f caraterzin Krpke truturs wth he eampe i fiure3-1

a'

Si2

Figure 3-1: A Kripke structure in which every other state is labelled A

The characteristic number of this structure is 1, since Tr,(O~ 0 Tro(s;), Tr0(s1) # Tro(s2). and Tr1(so) Tr,(s1).

Let

" C(M,)= aA - bA EX(a A -9b) A EX(-'aA b) A AX(a A -by -~aA b)

* C(M,;)= aA -b AEX(a A -b) AAX(a A -1b)

10

- C(M,s2)= -'a A b A EX(a A -b) A :\X(a A -'b)

We can now state the formula that characterizes this structure:

)jlM, s0) = C(Mi,s,) A
AG(C(A!,SO)= EXC(Af,s) A FXC(AI,s2) A AX(C(M,s) v C(Afs 2))) A
AG(C(AI,s)= EXC(A/,S) A AXC(A,s0)) A
AG(C(A,s 2) EXC(A,S) A AXC(A,s 0))

4. Equivalence With Respect To Stuttering
We first define what it means for two Kripkc structures to be-equivalent with respect to stuttering. Given

two structures M and AM' with the same set of atomic propositions, we define a sequence of equivalence

relations E, El ... on SxS' as follows:

.sEos' if and only ifL(s)= L(s').

• sE,+ 1 s' if and only if
'B,

1. for every path v in M that starts in s there is a path 7r' in M' that starts in s', a partition
BB2... of v, and a partition B'B' ... of i' such that for all jE Il, Bj and B. are both
non-empty and finite, and every state in Bj is En-related to every state in B5, and .'

5'

2. for every path v ' in At' starting in s there is a path 7r in M starting in s that satisfies the %
same condition as in 1.

Our notion of equivalence with respect to stuttering is defined as follows: sEs' if and only if sEis' for all

i2:0. Furthermore, we say that M with initial state so is equivalent to M' with initial state so if sEso.

Lenuna 12: Given two Kripke structures M and M', there exists an Isuch that VsVs' [sEts' iff sEs'].

:%

Proof: By the definition of E+ 1, sEt+Is' sEis', so E0o E1 DE 2 Since M and At' are both

finite, E0 must be finite as well, so only a finite number of these containments can be proper. Let El be the

last relation that is properly included in El_1. By the definition of proper containment, Vm 2_ 11 El = Em], so

sEts' =sEms', for mal. Since sEts'=sE__St s=sE_ s' ... , we have sEls' =Vin [sEms'1, so

sets' = sEs'. The other direction is trivial. 1

Theorem 13: If sEs', then for every CTL* formula f without the nexttime operator, sf iff s' If.

The proof is similar to that of theorem 2.

Lemma 14: Given a Kripke structure M, for every state sE Al, there is a CTL formula C(Ms) such that

VtM Ie1-C(M,s) iff sEt. ,

,-4-

11
-4VU

Proof: We will prove by induction on t"

elf -(sEli), then there is a CTL fonnula dl(st) such that Vv EAIlsEV= vI=dl(st)] and
tl d(sj).

* For every state sE At, there is a CTL formula C(M.s) such that for every tEAl, , Ct(Ms) iff
sEt,.

dt(sj) is a formula that distinguishes between t and states equivalent to s within the structure M, and

Ce(M,s) is a formula that characterizes E -equivalence to state s within M.

If we let Ct(M,s) be a conjunction of C1._ (Ms) and dl(s,t) for every I that is not E1-related to s, the second

assertion follows easily. By lemma 12, this condition implies that the lemma is true. Now it is necessary to

show how to construct dl(st) by induction on 1.

Basis (1=0): Let {pjl be the set of atomic propositions in L(s) and {qi} be the set of atomic propositions in

AP-L(s). Now, let

C0(Ms)=do(s) ApAA ,q.
1 J

It is clear that this formula is only true in states with the same labelling of atomic propositions as s. Therefore, -r

the base case is established.

Induction: Assume that the result is true for . We will show it for 14 1.

Since -(sE 1+ I), either there is a path from s without a corresponding path from t, or vice versa. In the

latter case, we will use the argument below to find a d1+1(t,s) such that tid 1 +1 (i,s) and s dr+(ts). We

can negate this formula to get the desired d+ 1 (s,t).

If there is a path from s without a corresponding path from t, we can divide this path into blocks (BBI .. .

such that:
Vi [x E Bi- x = (M,first(B1)) and first(B,+) t C1(M,first(B))].

Now, there are two cases: either there is a finite path from one state without a corresponding path from the

other, or there is an infinite path without a corresponding path, but every finite prefix of this path has a

corresponding path.

In the first case, the path from s is finite, so the blocks are finite and there are only a finite number of them

(say n). Consider the CTL formula:

dr+ , (st)= C(M,first(Bl)) A E[C1(Mfirst(B1)) U C1(M.first(B2)) A E[... U Ct(Af, first(B,)) 1 .. .
It is clear that s I, dr+ 1 (s,t) along the path BB 2... B, However, if t 0 dr+ , (sai) then there is a path that can

be partitioned into blocks B1 B1 ... B1 such that Vi[ve v P- CI(Mfirst(Bi))]. Since every state in B,

V,
.5.

12

satisfics C(M,tfirst(Bi)), the inductive hypothesis and the definition of [' gives Bi B '. ' Tereforc, this path

from t corresponds to the path from s, a contradiction. We conclude that I * dr+ I (s.t).

In the second case, we start by showing that the path from s has only a finite number of blocks by using an

argument based on K6nig's lemma. We can construct a tree rooted at £ such that it, .., t is a path through

the tree if and only if there is a path in the Kripke structure tu. ... t... t that corresponds to a

prefix of the path from s with B =<tu ... up>, B' =<tvl ... vq>, and so on. Now, if the path from s has an

infinite number of blocks, this tree must have an infinite number of nodes. Otherwise. if the tree had n nodes,

there could be no path of length n+ 1, so the first n+1 blocks of the path from s would have no

corresponding path from i. Since the Kripke structure is finite, we also know that this tree must be finitely

branching. Therefore, by Konig's lemma, there must be an infinite path through the tree. But this implies

that there is an infinite path from t that can be divided into an infinite number of blocks that correspond to

the blocks of the path from s, so there is a path from £ corresponding to the path from s, violating our

assumption. Therefore, the path from s has only a finite number of blocks.
p.

So, suppose that there are n blocks, all of which are finite except the last. Consider the CTL formula:
d1j 1(s) = C1 (Mfirst(B)) A E[C(M.first(B)) U C(Mfirst(B 2)) A E... U EG C,(A. first(B,)) ...

It is clear that s I dr+ 1 (st) along the path BB 2 ... B~r However, if d 1= a+ I (st) then there is a path that can

be partitioned into blocks B' B1 ... B" such that all of the blocks are finite except B and

'Vi [vE B = v = C (M,first(B))]. Since every state in Bi satisfies Ct(Affirst(Bi)), the inductive hypothesis and

the definition of El gives BE I B . We can also divide the infinite blocks B, and B' into an infinite set of

blocks containing one state each. Therefore, this path from t corresponds to the path from s, so we have a

contradiction. We conclude that t i d+ 1 (st).

Now, these d1+ 1(st) describe the existence or nonexistence of a single path along which some C, formulas

hold. By the definition of sE 1 v, every path from shas a corresponding path from v along which the same C1

formulas hold and vice versa. Therefore, sEl+ 1 v * v I d+ (s, t).

Therefore, the lemma is true. 0

Theorem 15: Given a Kripke structure Al with initial state s., there is a CTL formula F(Aso) that

characterizes that structure up to E-equivalence with respect to stuttering, i.e. M',s' I F(M,sn) ,= sn E si.

Proof: For any state s in M, let s ... sp be the extended successors of s, where an extended successor is a

state that is not E-related to s and is reachable from s along a path consisting entire!y of states that are

E-equivalcnt to s. Next, we construct G(As), which describes all of the transitions from s in M. In this

.'' 4a *."',t f 4. ' ."-,"' ;

13

construction, it is convenient to use the veak itnl operator, A[fWg]= -4'--igU--fA -'g]. which difTcrs from

the ordinary until in that it pcnns ani nfinitc path along which every state satisfies the first argument. So

now:

AEeIC(As) U C(AI.s,)l A %lC(Af,s) WVC(.%Is,)! A EG C(A,s) if sO-- EG C(AIs)
G(M,s) = IIJ

,) ICA(M,s) U C(As,)] A AjC(.Ni,s) WV C(AI,si) A -EG C(Afs) otherwise
i I

Let F(M,s,) be the formula C(M,sO) A AAG (C(Als) G(M.s)).
S

The correctncss ofF(Ms o) is an cas) :onsequcnce of the next two lemmas and theorem 13. 0

Lemma 16: sl- F(M,s).

Lemma 17: Ifsli F(M,t) and s' . F(Mt), then sEs'.

Proof of Lemma 16: Since every state is trivially equivalent to itself, so=C(M.s) is true by lemma 14.

Therefore, if slyhF(Ms) then there is a itM such that sl:EF(C(M,t)A-G(M,t)). Let v be the state

reachable from s that satisfies C(M,t)A-,G(Aa). By lemma 14, this condition implies tEv, so t and v must

satisfy the same CL formulas (theorem 13). We will show that It -G(Mt), giving a contradiction. There

are four cases.
W

1. ItO EfC(M,1) U C(M,w)], for some extended successor of t, w. By the definition of extended

successor, there is a path from i to w and the states on this path are E-related to t. By lemma 14.

these states must satisfy C(Mt). Since w0= C(M,w) is trivial, this path satisfies C(M,t) U C(M,w),

which is a contradiction.

2. i* EG CM,t). Since EG C(M,i) is a conjunct of G(M,t) if and only if tl= EG C(Mt), we have

an immediate contradiction.

3. to -,EG C(Mt). Since EG -C(M.t) is a conjunct of G(Mt) if and only if to EG C(Mt), we

have an immediate contradiction.

4. 1i* A[(M,t) WVC(M,wi). In this case, t O E[C(Mt) U(-C(M,t) A A -C(M.wi))]. Let t, ... in
I i

be this path, where t,.- -C(Mi)A A-,C(Mw) and Vi<n[t1 C(Mt). By lemma 14.
-(tnEt) and Vi< n [iEt). Therefore, t is an extended successor of i. But since i, C(Mit) is

trivially true, tn 0- A -,C(M.w) cannot be true, so we have a contradiction.
I

Therefore, the lemma is true. 0

I%.

14

Proof of Lemma 17: Since sEs' if and only if sets' for all 1>0, we will prove sl= F(A,t) and

51 0- F(AI,i) implies sts' by induction on L

Basis (t=O): Since s1 F(At), s-C(M,t) and therefore slCo(Aj). Similarly, s' 1Co(M,t), so

L(s)= L(t)= L(s'). Therefore, sEos'.

Induction: Assume that the result is true for L We will now show it for 1+ 1.

We want to show that every path, **, from shas a corresponding path, v' from s'. (The proof of the dual is

identical.) We will use induction on the length of r to prove the slightly stronger result:

If I**jn, then there is a corresponding path r' such that for some vE M,

last(w) F(MAv) and last(w ')I= F(Mv).

Basis (fi I1): 'a this case, i s>. Let B,=s and ' = B" =<s'). By the outer inductive hypothesis,

slu, F(M) and s' * F(M,) imply sEts', so B1 E1 B,. Therefore, the paths correspond. Since the last states

of each path satisfy F(M,t), the base case is true.

Induction: Assume the result for I _n. Suppose that a =s;s2. . s, a path of length n+ 1. Now,

ss 1'.. s.-i is a path of length n, so by the inner inductive hypothesis, there is a corresponding path 7n' such

that last(v')I-F(M,v) and s,-, *F(MAv) for some vE M. Let BjB 2... B, and BIB'... Bl be the

partitions that show that these paths correspond. There are three cases.

1. s 10C (Mv). Since s,_ 1 - F(Mv), we can infer that s,_ P A(C(M,v) WVC(Mw)], where wi are the ,

extended successors of v. Since snisn is a path and sn that doesn't satisfy C(Mv), we conclude that there must

be an extended successor of v, x, such that sn=' C(M,x). Since s, is a successor of s,1, it must satisfy all of

the AG formulas that s,-, satisfies, so s, * F(Mx).

From last(w')F(Mv) we can infer that last(w')=(Mv)AE[C(Mv) U C(Mx)]. Therefore, there is a

path sljs ...'k where s' =last(w'), Vi<k[sl IC=C(M,v), and s' k-C(Af.x). Now let w=B ... Bm<sn> and

*'=B ... B ' <B .. . sXsik >. Since s,, and 4 both satisfy F(Mx), the outer induction

hypothesis gives <s,> E<sk(>. Similarly, since the all the states in BrB' , and <s2 ... s~kI> satisfy F(M,v),

they are all El related to each other. Therefore, in and in' correspond with last(**) F(M,x) and

last('') 0- F(M,x).

2. snC (Mv) and v,=EG C(M,v). Since sn must satisfy the same AG formulas as s,-,, s, F(M,v).

Now, last(*')I F(M,v), so last*')= EG(Af,v). Therefore, last(,'w) must have a successor, e,, which also

satisfies C(M,v). Since this state must also satisfy all of the AG formulas, s I= F(AIv). Therefore, by the

outer induction hypothesis, s, El e. So if we let Bn + I=<sn> and B', = <s>, the paths correspond.

L ow,

15

3. s,,l:- M,v) and v EG C(M,v). By the reasoning above, sl= F(Afv), so s, ,rlast(BI'). Therefore. v

corresponds to w' with the same partition except that s. is added to B,,n.

We must also show that the blocks of the partitions are finite. The only problem is case 3, in which we

might add an infinite number of states to a block of r. In this case, each of the states added to BM satisfy

F(M.v), so if we add an infinite number of states to this block first(Bmn)I= EGC(AIv) must be true. But since

first(B,.) *- F(Mv), first(Bm) 1- -EGC(Av), so we have a contradiction. Therefore, all of the blocks of the

partition must be finite.

Therefore, the lemma is true. 0

Corollary 18: Given two structures M and M' with initial states so and s. respectively, so Esl if and only if

for all CTL° formulasfwithout the nexttime operator, MsAf),l= M',sg *f.

Corollary 19: Given two structures M and M' with initial states So and s' respectively, if there is a formula

of CTL° without the nexttime operator that is true in one and false in the other, then there is also a formula of

CTL without the nexttime operator that is true in the one and false in the other.

5. Algorithm For Stuttering Equivalence
In this Section we show how to compute the relation for equivalence with respect to stuttering for states

within a single Kripke Structure Al. The method that we suggest is polynomial in the number of states of M.

To determine equivalence between states in two different Kripke structures M and M2, we form a Kripke

structure M12 that is the disjoint union of these structures and check equivalence between the corresponding

states in the combined structure.

We construct a relation C on SxS that is identical to the relation E defined in Section 4. C= f"C, where

C,, is defined as follows:

* C0 = {(ss')1 (s)=L(s')}.

* In order to define C,+ , we must first define the set NEXT,+ ,(s) of extended successors of s. We
define this set in terms of the set ST,,+ (s) of stuttering states of s. ST,, , (s) = USTfi+,(s)
where, k

o ST°r ,(s) = {sJ

o RST+1(s) - ST +1(s)U{s' Is'EST+ 1 (s)A3s" ESTk+(s)[s"-.s']As'C,,s}

NEXT,,+(s) = {s' Is' 4ST,, 1(s) All' EST,,+(s)s" -, s']}.

We will also use a predicate IOOP,(s) that is true iff there is a cycle containing only states in
STft(s).

-N."

16

Now we can define C.+ , as fillows:

Cn+ 1= {(ss') LOOP,,+ (s)=LOOln+ 1(s') A sCs' A
Vs, ENEXT,+,(s)3s' E NFXT,,+,(s')IS, C,1S'] A
Vs1 E NEXT+ W(s)3s E NEXT,+ 1 (s)[s C7 1 sA

Proof that the relation C constructed above is actually equal to the relation E defined in Section 4 will be

given in the journal version of this paper. Since the inductive structures of the definitions of the two rclations

are different, it is necessary to split the proof into two parts: the first part shows that ECCi for every i; the

second part shows that CCEi for every i.

Computing ST. requires time O(S12). Computing C.+1 given Cn requires time o(Sl4), since at most IS2

pairs of states must be checked and each pair requires O(1SJ2) time to check. The algorithm terminates as soon

as C. = C,+r Since at any previous step k, ICk+ll < 1CkJ and since C. has at most IS12 pairs of states, there

are at most IS12 steps in the construction of C. It follows that the complexity of the entire algorithm is O(S16).

If we replace each equivalence class of C by a single state, this algorithm can also be used to minimize the

number of states in the structure.

6. Conclusion

The results of our paper have a number of surprising implications. For example, if a specification of a finite

state concurrent program in CTL* is sufficiently detailed so that there is only one program (modulo one of

our notions of equivalence) that meets the specification, then an equivalent specification could have been

written in CTL instead. Another surprising consequence is that if a CTL* formula is not equivalent to any

CTL formula, then it must have an infinite number of mutually inequivalent finite models. TFo see that this

result is true, we first observe that since CTL* has the finite model property, it must be the case that if two

CTL" formulas have the same finite models, they must have the same infinite models as well. Otherwise, if f.

had an infinite model M that was not a model off2, f, A -f2 would have an infinite model, but no finite

models, contradicting the finite model property of CTL" [5]. Therefore, we can characterize a CTL* formula

by the set of finite models in which it is satisfied.- If a CTL* formula is satisfied by only a finite number of

equivalence classes of finite models, then the formula is equivalent to the disjuction of the CTL formulas that

characterize the individual equivalence classes.

There are a number of directions for further research. First, from our construction, it appears that the

characteristic formula of a Kripke structure might be quite large. It would be nice to have a lower bound on

the size of this formula in terms of the size of the Kripke structure. Also, we conjecture that the O(ISI')

algorithm in Section 5 can be improved significantly. Finally, it would be interesting to see which of our

results carry over to Kripke structures with fairness constraints, i.e. Biichi automata.

-, , ' , :,, ,, ',.'.',,'., . ,,-,' ,:, ,.-,-,'... .- . ,.* .'.-. .-.-. ,... -... - .' .-.. -. .- .. 'j

17

References

1. M. Ben-Ari, A. Pnueli, Z. Manna. "The Temporal Logic of Branching Time". Acia Infonnatica 20 (1983),
207-226.

2. E.M. Clarke, E.A. Emerson. Design and Synthesis of Synchronization Skeletons using Branching Time
Temporal Logic. Proceedings of the Workshop on Logic of Prograins,Yorktown-Hcights, NY, Lecture Notes
in Computer Science # 131, 1981.

3. E.M. Clarke, E.A. Emerson, A.P. Sistla. Automatic Verification of Finite-State Concurrent Systems using
Temporal Logic Specifications: A Practical Approach. Tenth ACM Symposium on Principles of
Programming Languages, Austin,Texas, 1983, pp. 117-126.

4. E.A. Emerson, J.Y. Halpern. "Sometimes" and "Not Never" Revisited: On Branching versus Linear Time
Temporal Logic. Proceedings of the ACM Symposium on Principles of Programming Languages, Association
for Computing Machinery, Austin, Texas, January, 1982. to appear in JACM.

5. E. A. Emerson and P. Sistla. Deciding Full Branching-time Logic. The Sixteenth Annual ACM
Symposium on Theory of Computing, Association for Computing Machinery, Washington, D.C., May, 1984.

6. S. Graf and J. Sifakis. From Synchronization Tree Logic to Acceptance Model Logic. LNCS Vol. 193,
Logics of Programs, 1985.

7. M. Hennessy and R. Milner. On Observing Nondeterminism and Concurrency. LNCS Vol. 85, 7th
ICALP, 1980.

8. G.E. Hughes and M.J. Creswell. An Introduction to Modal Logic. Mcthuen and Co., 1977.

9. L. Lamport. "Sometimes" is Sometimes "Not Never". Seventh Annual ACM Symposium on Principles of
Programming Languages, Association for Computing Machinery, Las Vegas. January, 1980, pp. 174-185.

10. L. Lamport. What Good is Temporal Logic? Proceedings of the International Federation for
Information Processing, 1983, pp. 657-668.

11. 0. Lichtenstein and A. Pnueli. Checking that Finite State Concurrent Programs Satisfy Their Linear
Specification. Conference Record of the Twelth Annual ACM Symposium on Principles of Programming
Languages, New Orleans, La., January, 1985.

12. R. Milner. Lecture Notes in Computer Science Volume 92: A Calculus of Communicating Systems
Springer-Verlag, 1979.

13. B. Mishra and E. Clarke. "Hierarchical Verification of Asynchronous Circuits using Temporal Logic".
Theoretical Computer Science 38 (1985), 269-291.

14. 7. Manna, P. Wolper. "Synthesis of Communicating Processes from Temporal Logic Specifications".
ACM Transactions on Programming Languages and Systems 6 (1984), 68-93.

15. A. Pnueli. Linear and Branching Structures in the Semantics and Logics of Reactive Systems.
Proceedings of the 12th ICALP, 1985. Lecture Notes in Computer Science # 194, Sprnger-Verlag.

16. A.P. Sistla, E.M. Clarke. "Complexity of Propositional Linear Temporal Logics". Journal of the
Association for Computing Machinery 32, 3 (July 1985), 733-749.

5-

.~~- , '9 . - - ,., ,,-,".-

18

17. M.Y. Vardi. P. Wolper. An automata-theorctic approach to automatic program verification. Logic In
Computer Sciene, Cambridcg. Massachusetts, June, 1986.

18. P. Wolper. Specification and Synthesis of Communicati ng Proccsscs Using an IExtcnded 'Feinporal Logic.
Ninth Annual ACM Symposium on Principles of Programming Languages, Association fur Computing
Machinery, Albuquerque, New Mexico, January, 1982, pp. 20-33.

V.

IT

ILII

~ .. *~ ' .'. *. -. . % ?. - % % ,'- -

